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Abstract. Models of spin glasses are studied with a phase transition which is discontinuous in 
the Parisi order parameter. It is assumed that the leading-order corrections Lo the thermodynamic 
limit of the high-temperature free energy are due to the existence of a metastable saddle point in 
the replica formalism. An ansatz is made for the form of the metastable point and its contribution 
to the free energy is dculated. ?be random energy model is considered along with the Ising 
spin glass with p-spin interactions and the p-state Potts glass with hvo-spin interactions in their 
p c m expansion. 

1. Introduction 

The mean-field replica theory has proved to be a very powerful method for studying spin- 
glass models [I]. The main problem with the replica method is that it necessarily requires 
an ansatz for the solution. The random energy model (REM) is a very simplified spin-glass 
model which can also be solved without the use of replicas. It is, therefore, a very good 
testing ground for the replica method since, although very simple, it presents the typical 
features of spin glasses such as replica symmetry breaking and non-ergodicity. For T greater 
than a critical temperature T, the REM presents no breaking of the permutation symmetry 
among the replicas which, in the absence of external fields, tend to have the lowest possible 
value for the mean overlap. When T c T, the system undergoes a phase transition towards 
a one-replica-symmetry-broken phase. The corresponding latent heat is zero and so the 
transition is second order. The REM was first introduced and solved by Derrida [2] who 
was also able to calculate the finite-size corrections to the high-temperature free energy. 

In the present work this last result will be obtained by making use of the replica method. 
In doing so, a metastable saddle point in the replica space will be individuated as responsible 
for the leading-order finite-size corrections. The Ising spin glass with p-spin interactions 
(p-spin model) and the p-state Potts model will also be considered. Both these models tend 
to a REM in the limit p + W. 

The scheme of this paper is as follows. Section 1 is based on reference [2]; the REM 
and Denida's results for the finite-size corrections will be presented. In section 2 the 
same results as the contribution of a metastable saddle point will be recovered. Section 3 
will introduce the p-spin model and repeat the calculation performed for the REM in the 
formalism of a (p = w)-spin model. In section 4 the results will be extended to the case 
p c W. In section 5 the p-state Potts model will be introduced and the p = w limit will 
be studied. Finally, a p c w expansion for the Potts model will be formulated and the 
calculations will be extended to this case. 
t Current address: Sewice de Physique de I'Etat Condensd, CEA-Saclay, Orme des Merisien, 91-191 Gif-sur- 
Yvette Cedex. France. 
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2. The random energy model 

It is worthwhile recalling the main results from the REM in order to establish the notation. 
The model describes the behaviour of any system with a fixed number of energy levels with 
the energies independently distributed according to a Gaussian law. If 2N is the number of 
levels, the model is defined by the properties: 

The solution can easily be derived using a microcanonical argument. For the free energy 
one finds 

where EO = N J m  and Bc = 2m/J. 

of the partition function one obtains 
The REM can also be solved by making use of replicas. If one computes the nth power 

where 

After averaging over the disorder one has 

where up is the number of pi that are equal to p. The up verify the conditions 

To obtain equation (6) we have used the fact that for large enough N we can write 

One can find that for T > f i T c  the dominant contribution of (6) is obtained by taking 
V I  = n  
vp>2 = 0. 

The corresponding expression for is linear in n, so one can use the well known 
formula - - Z” - 1 

In Z = lim - 
n-0 n 

to calculate the high-temperature free energy (3a). The low-temperature expression for (3) 
is obtained by taking vp+j = 0 and up+ =nip, where p comes out to be equal to TIT,. 
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Finally one can write, without deriving it, the expression for the finite-size high- 
temperature free energy: 

-T, c T -= m T , .  (12) 
Demda derives expression (12) for k = 1,2,3. He also makes the more general 

hypothesis that it should be true for every k 2 1. 

3. The metastable point 

In this section the replica method will be used to derive equation (12). It has been asserted 
that, for T > G, the dominant contribution to the equation (6) is given by the choice (IO). 
The effect of taking only one group of m replicas will now be considered. This can be done 
by taking 

v ~ = n - m  v,,,=l. (13) 
For large N, equation (6) can thus be written as follows 

- 
Z' = Fhm + F 8 " b  (14) 

where dom stands for 'dominant' and sub stands for 'subdominant'. F d o m  is given by the 
choice (10) in equation (6) while F s u b  is given by the choice (13). One then has 

where in F s u b  all the integer m greater than m = 1 are summed over. One then has 

P 2 J 2  2 

4 

CO 

l i m ~ ~ s S U b = - ~ ~ e x p N  (I-m)In2+-(m - m )  
m m=2 n - r o  n 

The sum in (16) can be written as an integral in the complex plane over the circuit (C) as 
shown in figure 1. 

One has 

exp { N [(I - m) 1n2 + q ( m 2  - m)]) 
- - - i i d m  m sin(rrm) (17) 

Both the sum and the integral are not well defined. They can be defined by deforming 
the circuit C into a vertical path as indicated in figure 2. It can then be wrjtten 
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Figure 1. Integration path C. Figure 2. Integration path (t). The path intersects the 
Re(m) axis at the point mSD. 

where 'R is the residual conhibution mentioned below. The integral on the right-hand side 
of the previous equation can be solved with the aid of the saddlepoint method. Two remarks 
have to be made on this subject. The first is that since the integration is over imaginary dm, 
and, since the exponent is quadratic in m, the saddle point msp is given by the minimum 
and not by the maximum in m. Therefore 

The second remark is that to the saddle-point contribution one has to add the terms of 
the sum in equation (16) such that 2 < m < utsp, where msp is no longer an integer. The 
evaluation of the integrand on msp gives exactly the last term in equation (12). The terms 

k 
are reproduced by the residues that are added. The number k of those terms is given by the 
condition 2 < k < msp which is equivalent to the condition m T ,  e T < -T, 
in equation (12). Ansatz (13) seems therefore to be true, at least in the range of temperatures 
Tc < T < d T C ,  where expression (12) has been proved to be correct by Derrida. Thus, 
the choice (13), (14) reproduces expression (12) exactly while other possible choices for vp 
seem to lead to lower-order contributions. In [3] this assertion was proved rigorously for 
choices of the up such as 

u t = n - m - r  
U, = 1 with m > 0 
v, = 1 w i t h r > m .  

It can also be argued that this is likely to happen in general for more complicated choices 
for v,, where the insertion of more groupings is allowed. Furthermore, these arguments do 
not seem to be dependent on k. I€ this is so, the choice (13) provides the leading-order 
corrections to the high-temperature free energy for all T > T, and expression (12) is correct 
even fork > 3. 
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4. The p-spin model 

All this may now be extended to the p-spin model which is defined by the Hamiltonian 

XJSbl) = - Ji~,i~,,..,ip~i "'s, f h c s i  (21) 
(16it cix<.-<I,<N) i 

where h is an external magnetic field and the J;t,i2,,,.,~p are random variables that obey the 
Gaussian law 

41 0 41 41 40 40 40 40 40 
41 41 0 41 40 40 40 40 40 
41 41 41 0 40 40 40 40 40 

Q I B I D ~  = 40 40 40 40 0 40 40 40 40 

40 40 40 40 40 0 40 40 40 
40 40 40 40 40 40 0 40 40 
40 40 40 40 40 40 40 0 40 

For the sake of simplicity, from now on it will be assumed J = 1. If one indicates with 
E; the energy relative to configuration {a);. it is a well known result that 

for lqi*jl < I, Vi, j 
k 

(23) 

where q;,, indicates the overlap between ({a);) and ( [a) j ) .  In the limit p -+ 00 then, the 
p-spin model reduces to the REM [4,51. 

p - r -  
P ( E I ,  ~ z ,  . . . , ~ k )  -+ n P(E;) 

;=I 

The expression for F is 

. (26) 
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which is the same result found in the previous section. Ansatz (13) is therefore equivalent 
to a matrix of the form (26). It is worth remarking that to obtain FIB,,, one has to sum 
over all the possible ways of inserting an m x m block in an n x n matrix. 

This result will now be extended to the case p e CO in the fashion of 171. Before that, 
it is appropriate to briefly show the low-temperature behaviour of the model. Below T', the 
p .c 00 expansion leads to the mean-field equations 

where 
1 rm 

One also has 

Equation (30) for the critical temperature comes from the condition that the value of the 
break point in the order-parameter function [6] that maximizes the free energy is 1. This 
is because of the nature of the transition which, though second order in the thermodynamic 
sense, is discontinuous from the order-parameter point of view 171. 

If we now set T > To one can calculate F S u b  with the insertion of a block, as in the 
p -+ cc limit. Defining Tcw = 1 / ( 2 m ) ,  the finite-p equivalent of expression (12) can 
easily be obtained: 

- [ ,r2] ;[; ]* ;[+i3+.. .+---  (--l)k+l z Ir 

k [Z '1 I n Z = N  ln2+- - -  = - I  f -  

One also has 

It is worthwhile noting that, by assuming msp = 1 in equation (39, one obtains equation (30) 
for the critical temperature. This means that one can find T, as the temperature at which 
the block inserted in the metastable matrix disappears and Q ~ B I ~ ~  coincides with the stable 
saddle-point matrix of F d o m .  Furthermore, equation (28) for q1 is recovered as a saddle- 
point equation for BsEt.. In the absence of a magnetic field, it has been assumed that 
40 = 0. 
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5. The Potts model 

The results obtained up till now will be extended in this sectlon to the Potts model which 
is defined by the Hamiltonian 

where p ( i )  = 0 , l . .  . . , p- 1, and the Jij are, as usual, random variables obeying a Gaussian 
distribution with variance 1 / N  and mean value JOIN. 

For every p > 4, the model undergoes a phase transition of the same kind as the one 
observed in the REM, from a replica symmetric phase to a one-symmetry-broken phase. In 
this work all the ferromagnetic order parameters will be neglected and the focus will be 
only on the glassy aspects of the model. Hence, the free energy is [3,8] 

where 

and 

q:.! = q"~(pS,, ,  - 11, with 0 < lq31 < 1. (39) 

According to conventional wisdom, one can assume that in the high-temperature phase 
one has 40 = 0. Therefore the free energy is 

and the entropy 

S =  N [ I n p - s ]  

(40) 

which becomes negative if T c Tc = J ( p  - l)/4 In p. Below T, the solution is given by 
a onssymmetry-broken matrix of elements q@. 

To calculate the low-temperature free energy it is useful to use the p vectors ea 
(a = 1, . . . , p ) ,  defined by the relations 

(42) ejei (I b -  -pp6.,b-1 i = l ,  . . . , p -  1 

where repeated indexes are summed. If qo = 0 and 41 = 4. with a little algebra, one obtains 
the low-temperature fresenergy expression: 

where 2: = (~1~22.. . . ,zP-l) and k 2 p.Jii. 
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In the limit p -+ CO, the last integral can be solved exactly [3] and the solution is found 
to be given by the mean-field equations: 

qo=o q1=1 

I N [-$(p - 1) - - for T > T, 
F =  

This solution describes a pN-state REM with a variance proportional to ( p  - 1). The 
finite-size corrections for this limit are already known, so the more general case in which 
the finite-p corrections are included will be treated directly. One can define 

where one has 

E p m  = 0. (46) 

Recent work has been done on the numerical estimation of the p-dimensional integral 
ep(m) 191. Correcting the integral in the freeenergy expression one obtains the mean-field 
equations: 

Assuming In p >> 1 the last term in square brackets can be neglected: 

Setting q = 1 - E ,  one finds an equation for the critical temperature 

One can see that the corrective terms in equations (48). (49) tend to zero in the limit 
p + CO. The finite-size corrections are obtained by proceeding in the same way as for the 
p-spin. Defining 

o 2T2~'(m) 

one gets 
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where TF fe and finally 

(52) for & F T ( T ? )  c T < J W T T ( T p 0 )  

k' k -0. (53) 

ii +" + [ 4 (T3 + I + 201 a s i n  (5 [ + + 1 + 20 

where 

In principle, all this is equivalent to what has been done for the King spin glass with 
p-spin interactions and all the considerations made at the end of section 4 can be repeated 
here. 

6. Conclusion 

For the high-temperature phase of the REM, the partition function was evaluated on a 
metastable point that was introduced in order to account for the probability that a group 
of m replicas freezes in a phase which resembles the low-temperature one. In this way 
the finite-size corrections to the free energy were calculated. The result was checked with 
the one obtained by Derrida without the use of replicas. The two approaches are totally 
independent. Denida hypothesizes that his result could be valid for every T > Tc but was 
only able to prove it in the range of temperatures T, < T < dT,. The results obtained 
in this work coincide with Derrida's. in particular they coincide for T, < T < dT,. The 
reliability of this method does not seem to depend on the temperature, provided that T > Tc. 
Therefore, the equivalence of the two results in the range where formula (12) can be proved 
to be true seems to indicate the reliability of the result for all temperatures. In extending this 
ansatz to the p-spin and Potts models it was possible to identify a one-block matrix as the 
metastable point. Mean-field equations give, for the elements of the block, the same value 
as the low-temperature mean overlap. Furthermore, a p < 00 expansion was performed for 
these models in order to extend the results to finite-p, p-spin and Potts models. 
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